Definições
Tipos de pressão existentes:
Pressão absoluta
A referência de pressão mais clara é a pressão zero, existente no espaço sem ar do universo. Uma pressão que esteja relacionada com essa referência de pressão é conhecida como pressão absoluta. Para a diferenciação requerida de outros tipos de pressão, ela é indicada com a sigla “abs”, que deriva do latim “absolutus” significando separado, independente.
Pressão atmosférica
A pressão mais importante para a vida na Terra é provavelmente a pressão atmosférica, pamb (amb = ambiens = ambiente). Ela é criada com o peso da atmosfera que cerca a Terra com uma altura de aproximadamente 500 km. Até essa altitude, onde a pressão absoluta é pabs = zero, sua magnitude diminui continuamente. Além do mais, a pressão atmosférica é sujeita a flutuações dependentes do clima que é bem conhecida através da previsão do tempo diária. Ao nível do mar, pamb fica na média de 1.013,25 hectopascal (hpa), correspondente a 1.013,25 milibar (mbar). Com ciclones e anticiclones, essa pressão varia em torno de 5%.
Pressão diferencial
A diferença entre duas pressões, p1 e p2, é conhecida como pressão diferencial, Δp = p1 – p2. Nos casos onde a diferença entre duas pressões representa sozinha a variação medida, chamamos de pressão diferencial, p1,2.
Sobrepressão (pressão manométrica)
A pressão medida mais frequentemente no campo tecnológico é a pressão atmosférica diferencial, Pe (e = excedens = excessivo). Trata-se da diferença entre uma pressão absoluta, pabs e a pressão atmosférica relevante (absoluta) (pe = pabs – pamb) e é conhecida, em resumo, como sobrepressão ou pressão manométrica (pressão relativa).
Uma sobrepressão positiva significa que a pressão absoluta é maior do que a pressão atmosférica. No caso oposto, estamos falando de sobrepressão negativa.
Considerações iniciais ou aproximações
Como estes cálculos serão feitos no campo e são apenas aproximados, não vamos levar em conta a diferença de vazão devido a altitude, umidade relativa e temperatura onde o compressor está operando.
Muitos manômetros veem com a escala em kgf/cm², podemos considerar, para estes cálculos, 1 bar = 1 kgf/cm².
Cálculos ou o que realmente interessa
Como visto anteriormente, os manômetros que estamos acostumados a trabalhar nos mostram a sobrepressão, ou seja, a diferença de pressão de um sistema onde se encontra conectado o manômetro, um reservatório por exemplo, e a pressão atmosférica.
Quando o manômetro de um reservatório indica 0 barg (o g vem de gauge, manômetro em inglês), isto significa que o mesmo contém ar, mas sua pressão interna é a mesma da atmosfera.
Quando “adicionamos” um volume de ar equivalente ao tamanho do reservatório, elevamos a pressão manométrica em aproximadamente em 1 barg. Por exemplo, num reservatório de 500 litros que esta a 0 barg, quando “adicionamos” 500 litros de ar no mesmo, o manômetro subirá para 1 barg, e assim por diante.
Tendo isto em mente, fica fácil estimar o tempo de enchimento do reservatório quando sabemos a vazão do compressor ou a vazão do compressor quando medimos o tempo de enchimento do reservatório.
Vamos utilizar as fórmulas abaixo:
∆P=P2-P1
ΔP – Diferencial de pressão (barg)
P1 – Pressão inicial (barg)
P2 – Pressão final (barg)
Q=(V ×∆P)/T
T=(V ×∆P)/Q
Q – Vazão efetiva do compressor de ar (litros / segundo)
T – Tempo de duração para o reservatório atingir o ΔP (segundos)
V – Volume do reservatório (litros)
Para facilitar o entendimento, vamos ver dois exemplos.
Um sistema com um compressor de ar de 15 hp, 56 pcm de vazão, ligado a um reservatório de 500 litros. Vamos estimar o tempo para que o reservatório vá de 0 barg a 7 barg.
P2 = 7 barg
P1 = 0 barg
ΔP = 7 barg
Q = 56 pcm ≈ 26,43 l/s
V = 500 l
T = (500 ×7)/26,43 ≅ 132 seg
Ou seja, se tudo estiver certo com o compressor de ar, o mesmo irá demorar aproximadamente dois minutos e 12 segundos para encher o reservatório de 0 barg a 7 barg.
2. Cálculo da vazão do compressor
Um compressor de ar ligado a um reservatório de 1.000 litros demorou 3 minutos e meio para encher o reservatório de 0 barg a 10 barg. Vamos estimar a vazão deste compressor.
P2 = 10 barg
P1 = 0 barg
ΔP = 10 barg
V = 1.000 l
T = 3 min e 30 seg = 210 s
Q=(1.000 ×10)/210≅41,62 l/s≅88 pcm
Considerações finais
Em diversas situações estes cálculos são úteis para os técnicos que estão no campo. Podemos nos certificar, sem abrir nenhum componente do compressor, que o mesmo está trabalhando corretamente.
O desempenho do compressor é uma reclamação recorrente de clientes, mas na maioria dos casos o problema encontra-se na utilização do ar comprimido, seja devido a um aumento de consumo, de vazamentos ou problemas de queda de pressão na rede.
Com base nos princípios apresentados aqui, vamos falar sobre como calcular o consumo de ar causado por vazamentos em uma rede de ar e como calcular o consumo de pistões de acionamento pneumático.
Links para aprofundamentos e estudos
Tipos de pressão: pressão absoluta, pressão manométrica, pressão diferencial
Lei dos gases ideal
Podcast: Play in new window | Download
Subscribe: RSS
Considerações iniciais ou aproximações Como estes cálculos serão feitos no campo e são apenas aproximados,…
Começaremos nossa série de artigos sobre climatização e refrigeração pelo ciclo de refrigeração. O entendimento…
Mais um treinamento finalizado! Queria agradecer ao instrutor Edilson R. Silva e toda turma pelo…
Mais uma etapa concluída! Treinamento de refrigeração industrial NH3 (amônia) na Bitzer Brasil. Gostaríamos de…
Alguns modelos de unidades compressoras vêm com uma porca de fixação (figura 1) na descarga…
Agora, seu compressor de ar pode estar funcionando muito bem, como tem sido há vários…
View Comments
Prezados , maravilhoso conteúdo. É realmente muito interessante pra mim que trabalho na área com ar comprimido industrial e medicinal